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The integrated energy system with energy production, distribution,
storage, and consumption from different sector are linked together with
operational flexibility in an intelligent way
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Introduction

» Flexibility benefits to the power system with the integration to the heating and
transport impose a cost-effective solution towards zero carbon emission

« Electric vehichles (EVs) and heat pumps (HPs) offer potential flexibility in a peak
shaping in demand and price profiles.

* In order to limit the need for grid reinforcement and energy management, demand
response concept is increasing.

« The significant contribution of this study is to develop and implement adaptive ON/
OFF control strategies to EVs and HPs for real-time grid support with the use of an
autonomous controller.

« Supporting grid voltage and satisfying end-user need simultaneously.

« The proposed control architecture is local and reduces the need for costly
communication infrastructure to handle big data and control architecture.
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System Architecture
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Grid Terminal Voltage with Only Residential Base Load

Mlnlmum Termlnal Voltages of leerent Feeder
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Residential and Thermal Load

Residential and Thermal Demands are Based on Actual Measurement from Residences in Denmark.

Residential Load Demand Average Load Profile During Winter Load Profile of Different Houses
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Heat Pump and Storage System
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EVs’ Distribution and State of Charge

Driving distance data from Danish national travel survey are used to generate SOC.

Distribution of EV with Corresponding State of Charge
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Charger capacity: 7.4kW for 24kWh Battery & 11kW for 60kWh Battery
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EV Charging Management

Measure Initial SOC ( SOCy, )

User l l l l l l
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In order to avoid grid congestion, charging time of EVs are distributed over the
period of time (T, ) based on its different group
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EV Charging Management

Charging distribution of EVs with group (P7)
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Coordination of EV and HP
Terminal Voltage

. EVs have Priority over HPs

« EVs and HPs at far end of Feeder with lower
terminal voltage has higher priority

+ IfV,20.94pu, EVs charging and HPs
operation are allowed until V, < 0.92pu

. If V, < 0.94pu, No other EVs and HPs that are
in OFF state are allowed to charge or operate
until V, 2 0.96pu (To avoid hunting effect)

+ If V, goes below 0.92pu for more than OFF
delay time, EVs and HPs disconnects and
reconnects only when V, recovers to 0.96pu.

+  If V, goes below 0.9pu for more than 60
seconds, EVs and HPs in respective terminal
attempts to operates only after 20min and
30min respectively.

*  No ON/OFF delay for EVs and HPs with
Priority

DEPARTMENT OF ENERGY TECHNOLOGY

: Turn ON/OFF Delay Based on

300 T T T T T T T
= ON delay EV
270 - — = OFF delay EV ]
= ON delay HP
240 - — —OFF delay HP
210 -
2180
g
= 150
<
5
2120~
~
90 = - » ~
& ~
60F ~_ °
~
30 =

((

ON and OFF Delay Duration Based on V ¢

o 1
09 091 092 093 094 095 096 097 098 099 1

Terminal Voltage (Vt) [pu.]

14

AALBORG UNIVERSITY



ON/OFF Coordination of EV and HP for Flexible Operation
to Support Grid

HP and EV ON/OFF delay based on V ¢
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Results and Discussion

Transformer Status
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Conclusion

« This work provides insights to the concept of the potential use of EVs and
HPs as distributed flexible load in Denmark’s low voltage distribution
network.

« The proposed control strategy plays an effective role in demand response to
enhance flexibility in the operation of EVs and HPs while supporting grid
voltage and satisfying end-user need simultaneously.
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