Optimal Controller Synthesis with Application to Floor Heating

Daniel Lux Jiri Srba

In collaboration with:

Introduction

- Automatic control of a floor heating system in a family house.
- Formulated as a game between the environment and the controller.
- From abstract game strategies to a concrete code running on real hardware.
- Experimental evaluation of the benefits.

The Floor Heating Scenario

- Each room has a hot water loop that can be opened/closed.
- Loops are controlled via activating/deactivating valves.
- Rooms equipped with wireless temperature sensors (report every 15 minutes).
- Each room has its user-defined target temperature.

The Floor Heating Scenario

- Each room has a hot water loop that can be opened/closed.
- Loops are controlled via activating/deactivating valves.
- Rooms equipped with wireless temperature sensors (report every 15 minutes).
- Each room has its user-defined target temperature.

Control Task

Maintain the room temperatures as close as possible to the target temperatures.

Additional Factors and Restrictions

- Heat exchange among the rooms (influenced by the door positions).
- Pipes are traversing under several rooms.
- Outside temperature and weather forecast.
- Capacity of the heating system.
- Temperature user-profiles for the different (group of) rooms.

Additional Factors and Restrictions

- Heat exchange among the rooms (influenced by the door positions).
- Pipes are traversing under several rooms.
- Outside temperature and weather forecast.
- Capacity of the heating system.
- Temperature user-profiles for the different (group of) rooms.

Control Cycle

Each 15 minutes do:

- Fetch readings of temperature sensors.
- Gather weather information (outside temperature, weather forecast).
- Seceive the actual target temperatures request.
- Set a new valve configuration (11-bit vector).
- **③** Use remaining time for computing a control strategy for the next slot.

Currently Employed Bang-Bang Controller

Each 15 minutes do:

- Fetch readings of temperature sensors.
- Receive the actual target temperatures request.
- For each room do:
 - ▶ if actual-temperature < target-temperature then open the corresponding valve,
 - otherwise close the valve.
- Wait until the next time slot.

UPPAAL Stratego Controller

Each 15 minutes do:

- Gather all relevant information.
- Set the new valve configuration according to the computed strategy (in the previous time slot).
- Sompute an updated control strategy given the new information.

UPPAAL Stratego Controller

Each 15 minutes do:

- Gather all relevant information.
- Set the new valve configuration according to the computed strategy (in the previous time slot).
- Sompute an updated control strategy given the new information.

Aspects taken into account:

- House and room layout, pipe configuration.
- Stochastic information about the likehood of a door being open/closed.
- Actual outside temperature and weather forecast.
- User defined temperature profiles.

Tool Chain Architecture

Seluxit adapters

Tool Chain Architecture

 $rac{d}{dt}T_{i}(t) = \sum_{j=1}^{n}A_{i,j}^{d}(T_{j}(t) - T_{i}(t)) + B_{i}(T_{env}(t) - T_{i}(t)) + H_{j,i}^{v} \cdot v_{j}$

Demonstrator

- Built using the real hardware, identical with the one in the house.
- Simulation running 60 times faster (1 second = 1 minute).

Hardware Details

Experimental Data - Three Day Scenarios

Weather	Comfort Penalty			Energy		
Weather	Bang-Bang	Stratego	imp.	Bang-Bang	Stratego	imp.
Aalborg	14583	8342	43%	14180	12626	10%
Anadyr	2385515	1483272	37%	23040	22475	2%
Ankara	17985	10464	41%	17468	15684	10 %
Minneapolis	22052	12175	44%	18165	15882	12%
Murmansk	399421	187941	52 %	22355	21011	6%

Experimental Data - Three Day Scenarios

Weather	Comfort Penalty			Energy		
	Bang-Bang	Stratego	imp.	Bang-Bang	Stratego	imp.
Aalborg	14583	8342	43%	14180	12626	10%
Anadyr	2385515	1483272	37%	23040	22475	2%
Ankara	17985	10464	41 %	17468	15684	10 %
Minneapolis	22052	12175	44%	18165	15882	12%
Murmansk	399421	187941	52 %	22355	21011	6 %

Weather	Comfort Penalty			Energy		
	Bang-Bang	Stratego	imp.	Bang-Bang	Stratego	imp.
Aalborg	14583	8552	41%	14180	12590	11%
Anadyr	2385515	1503448	36%	23040	22371	2%
Ankara	17985	10511	41%	17468	15697	10 %
Minneapolis	22052	12725	42%	18165	15837	12%
Murmansk	399421	191441	52 %	22355	20923	6 %