
Storing and Querying

Big Energy Time Series

Christian Thomsen (chr@cs.aau.dk) 

joint work with Søren Kejser Jensen 
and Torben Bach Pedersen

mailto:chr@cs.aau.dk


The challenge

• Wind turbines and solar panels have a lot of 

sensors that can deliver data values several 

times per second

– A modern wind turbine has up to 15,000 streams

• This generates a lot of data

– 10 reads/second, 4 bytes, 15000 streams 

~50 GiB per day from one wind turbine

2



The current situation

• The available information is currently not 
exploited or stored

• Many monitoring solutions consider few 
(~100) sensor streams and store only a 
single value for every x minutes (e.g., the 
average) 

– x is typically ½, 1, 2, 5, or 10

• Important things might not be seen

3



Example of ”missing the point” :-)

4

0

5

10

15

20

25

0 10 20 30 40 50 60



What we want to do…

• Store and use all available sensor data

• Support efficient aggregate queries on historical 
data

• Support analysis of data while it is being ingested

– Detect underperformance and other problems 
immediately

– Enable predictive maintenance

– For example, detect and fix a problem before the wind 
turbine breaks

5



How we want to do it

• Time-series can contain millions of points 

• An efficient way to store and process them 
is to represent them by models

• We use a model-based approach for the 
time-series data

• A (user-defined) error can be allowed

– For example 5%, 1%, or 0%

6



Simple example – linear models

7

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

actual values model



ModelarDB

• We have developed ModelarDB which uses
models to store time series data

• Time series-specific functionality
implemented in a system-agnostic library

• We have implemented some model types 
and the user can optionally add more. 
ModelarDB will automatically pick the best

• Query processing and storage from existing
systems (we have used Spark & Cassandra)

8



Storage requirements for a real-world

data set from the energy domain

Storage Method Size in GB

CSV files 617.52

PostgreSQL 10.1 782.87

InfluxDB 1.4.2 4.34 – 4.44

Apache Parquet files 106.94

Apache ORC files 13.50

Apache Cassandra 3.9 111.89

ModelarDB 2.43 – 2.86

9



Performance example for large 

aggregate queries

10



Performance summary

• ModelarDB provides support for fast 

ingestion, good compression, and fast 

large aggregate queries

• ModelarDB remains competitive for small 

aggregate and point/range queries

• Other systems are good for one of these, 

but not both

11



Conclusion and future work

• ModelarDB provides novel model-based
compression within an error bound

• Good performance

• Integrated with Spark and Cassandra

• Future directions

– Indexing to increase query performance further

– Represent correlated streams together

12


