

Storing and Querying Big Energy Time Series

Christian Thomsen (chr@cs.aau.dk)

joint work with Søren Kejser Jensen and Torben Bach Pedersen

The challenge

- Wind turbines and solar panels have a lot of sensors that can deliver data values several times per second
 - A modern wind turbine has up to 15,000 streams
- This generates a lot of data
 - − 10 reads/second, 4 bytes, 15000 streams →
 ~50 GiB per day from one wind turbine

The current situation

- The available information is currently not exploited or stored
- Many monitoring solutions consider few (~100) sensor streams and store only a single value for every x minutes (e.g., the average)

- *x* is typically ½, 1, 2, 5, or 10

• Important things might not be seen

Example of "missing the point" :-)

What we want to do...

- Store and use all available sensor data
- Support efficient aggregate queries on historical data
- Support analysis of data while it is being ingested
 - Detect underperformance and other problems immediately
 - Enable predictive maintenance
 - For example, detect and fix a problem before the wind turbine breaks

How we want to do it

- Time-series can contain millions of points
- An efficient way to store and process them is to represent them by models
- We use a model-based approach for the time-series data
- A (user-defined) error can be allowed – For example 5%, 1%, or 0%

Simple example – linear models

ModelarDB

- We have developed *ModelarDB* which uses models to store time series data
- Time series-specific functionality implemented in a system-agnostic library
- We have implemented some model types and the user can optionally add more. ModelarDB will automatically pick the best
- Query processing and storage from existing systems (we have used Spark & Cassandra)

Storage requirements for a real-world data set from the energy domain

Storage Method	Size in GB
CSV files	617.52
PostgreSQL 10.1	782.87
InfluxDB 1.4.2	4.34 - 4.44
Apache Parquet files	106.94
Apache ORC files	13.50
Apache Cassandra 3.9	111.89
ModelarDB	2.43 - 2.86

Performance example for large aggregate queries

Performance summary

- ModelarDB provides support for fast ingestion, good compression, and fast large aggregate queries
- ModelarDB remains competitive for small aggregate and point/range queries
- Other systems are good for one of these, but not both

Conclusion and future work

- ModelarDB provides novel model-based compression within an error bound
- Good performance
- Integrated with Spark and Cassandra
- Future directions
 - Indexing to increase query performance further
 - Represent correlated streams together